31 de marzo de 2006

On the structure of competitive societies

E. Ben-Naim, F. Vazquez,  S. Redner, Eur. Phys. J. B 49, 531 (2006)

We model the dynamics of social structure by a simple interacting particle system. The social standing of an individual agent is represented by an integer-valued fitness that changes via two offsetting processes. When two agents interact one advances: the fitter with probability p and the less fit with probability 1 − p. The fitness of an agent may also decline with rate r. From a scaling analysis of the underlying master equations for the fitness distribution of the population, we find four distinct social structures as a function of the governing parameters p and r. These include: (i) a static lower-class society where all agents have finite fitness; (ii) an upwardly-mobile middle-class society; (iii) a hierarchical society where a finite fraction of the population belongs to a middle class and a complementary fraction to the lower class; (iv) an egalitarian society where all agents are upwardly mobile and have nearly the same fitness. We determine the basic features of the fitness distributions in these four phases.